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Abstract— The sense of touch can convey semantic and emo-
tional information in social or computer-mediated interactions.
Touch plays an essential role in communication with individuals
affected by multiple sensory loss, many of whom use modes of
touch communication that can be broadly described as tactile
sign languages. Few technologies exist today to support such
interactions. Here, we present a smart bracelet for facilitating
tactile communication and interaction. The smart bracelet
captures and analyzes vibrations that are elicited in the skin
via touch gestures performed on the hand. We demonstrate
the utility of this system for supporting communication via the
Deafblind Manual alphabet, which is a tactile sign language.
This smart bracelet can classify signed letters with greater than
90% per-letter accuracy. These results show how existing modes
of tactile communication can be integrated with information
technologies. This work may furnish new paradigms for human-
computer interaction via self- and interpersonal-touch contact.

I. INTRODUCTION

The skin is a highly expressive medium used for perceiv-
ing and interacting with the world, including communication
through touch. Indeed, touch interaction can convey signif-
icant meaning, intent, and sentiment. The diverse repertoire
of touch interactions encountered in everyday settings,
including interpersonal touch, contrasts starkly with the
limited communicative and expressive range of touch found
in most computing systems today. In some interpersonal
interactions, including those involving individuals with
multiple sensory impairments such as deafblindness, touch is
the principal medium of communication [1], [2], [3]. Several
languages, organizations, and educational systems exist to
support the needs of individuals with deafblindness, but
there exists a lack of accessibility for digital communication,
which is crucial to address due to its ubiquity. However,
current interaction paradigms primarily lie in the audiovisual
domains. New technologies are needed that can enable
individuals with all ranges of sensory abilities to engage
with information technologies and digital resources.

Here, we present a smart bracelet for supporting tactile
communication and interaction (Fig. 1A). This system
captures vibration signals elicited in the skin by touch contact
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gestures performed on the hand; these gestures could be initi-
ated by the wearer or by another person. The captured vibra-
tions are analyzed using signal processing and machine learn-
ing methods that can recognize, from a designated lexicon,
which gestures are performed (Fig. 1B1). We demonstrate the
ability of this system to capture and classify touch gestures
from the Deafblind Manual alphabet (Fig. 1C), a tactile sign
language (TSL) used by individuals in Australia who are
deafblind, in order to support digital tactile communication.

While several researchers have investigated output tech-
nologies for reproducing TSL [4], [5], [6], [7], the present
work is, to the best of the authors’ knowledge, the first input
device specifically directed at supporting digital TSL com-
munication. Such a device could address important unmet
needs, such as those of transcribing information conveyed
via TSL communications in court proceedings, emergencies,
policy forums, scholarly meetings, or moments of personal
or historical significance, especially where transcripts might
otherwise be unavailable. Our TSL input device enables the
letter-by-letter translation of touch gestures performed on
the hand. One might, for example, use the palm of one’s
own hand to enter text, take notes, or send a text message
normally requiring a standard phone interface (Fig. 1B2).
Such a system could assist individuals with limited vision,
for whom usage of mobile devices can be challenging.

In other applications, smart bracelets like the one pre-
sented here could also support the training of TSL in-
terpreters. When combined with an output device capable
of reproducing TSL gestures, such a smart bracelet could
provide a means of TSL communication over the internet, in-
cluding remote TSL interpretation, improving access to such
services by many individuals. When combined with com-
puter translation algorithms, such a smart bracelet could also
facilitate conversation between individuals who communicate
via different languages, including deafblind individuals who
may not use the same TSL (Fig. 1B3). Indeed, a diverse
variety of TSLs are used around the world [6].

A. Deafblindness and Tactile Communication

Research and development in automatic speech
recognition and language processing over the past 50
years has yielded algorithms and systems for capturing,
computationally understanding, and interacting with
computers via speech. More recently, analogous methods
to speech recognition have been used to support computer-
based communication by detecting hand poses during visual
sign languages, such as American Sign Language [8]. To
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Fig. 1. A) Wrist-worn acoustic sensing interface to encode and detect touch gestures on the hand. B) System overview and envisioned applications for
detection of touch gestures on the skin. B1) Touch signals signed on the palm are transmitted to a PC via serial communication with the microcontroller.
The data is processed and features are extracted to be used for classification. B2) Wearable interface enables self-signing on the palm of the hand to encode
semantic meaning for note-taking purposes, sending a remote text message via touch, or transcription/record-keeping in the tactile domain. B3) Wearable
interface translates interpersonal touch gestures as they are being signed. This could facilitate learning of TSL gestures, transcription of conversations in
the tactile domain, and translation of TSL in real-time when the wearer is uncertain of the semantic mappings of the alphabet. C) The 26 letters of the
Deafblind Manual alphabet.

date, little attention has been given to achieving similar
goals in tactile communication, particularly TSLs.

A recent report by the World Federation of the Deafblind
indicates that between 0.2-2% of people are impacted by
sensory impairment of both vision and hearing. Deafblind
individuals use a variety of languages for tactile communi-
cation, depending on their region, community, and individual
factors, such as the onset and severity of sensory impairment.
Many TSLs exist today supporting critical daily activities
and social interaction [9]; in addition, many of the TSLs are
letter-based semantic touch communication methods. Here,
we demonstrate a system for supporting TSL communica-
tion, specifically utilizing the Deafblind Manual alphabet,
which involves the performance of touch gestures, including
tapping, lightly pinching, and sliding on the surface of the
hand. Each of the 26 gesture patterns corresponds to a letter
in the English alphabet [6] (Fig. 1C).

Other technologies for supporting communication by
individuals with visual and auditory sensory loss include
Braille interfaces, emerging methods for tactile graphic
displays, and more commonly available screen-based
accessibility features for those with low vision. However,
such methods do not support the communication needs of
all individuals who are deafblind. More recently, researchers
have engineered systems to translate text or speech into
tactile patterns [4], [5], including TSL gestures [6], [9],
[10]. However, the authors are not aware of any prior
efforts to facilitate or develop a computational encoding of
tactile input. A system such as the one presented here could

support TSL communication by enabling transcription,
analysis, or reproduction of TSL interactions.

B. Capturing Touch Gestures via Vibration Signatures

Touch interactions with the skin elicit vibrations that travel
far from the point of contact, encoding information about the
contact location and nature of the gesture [11], [12], [13],
[14], [15]. This physical process makes it feasible to collect
information about tactile interactions using vibration sensors
that are positioned remotely from the contact location.
Human-computer interaction research has utilized such pro-
cesses to provide means of computational input via contact
with the skin, as in the Skinput device [16]. Many other sens-
ing methods can be used for capturing information from skin
contact, including capacitive, electromyography, ultrasound,
force, and other sensing techniques [17], [18], [19], [20].
However, the propensity of touch-elicited vibrations to travel
great distances in the skin and the efficiency with which such
signals can be captured electronically via low-cost, readily
available sensors makes this approach particularly attractive
for interactive device engineering, especially in settings
where it is preferable to leave the hand unencumbered.

C. Summary of Contributions

We present a smart wrist wearable for capturing and
recognizing touch gestures that occur on the hand during
skin-to-skin contact. To inform the design of this smart
bracelet, including the number and placement of sensors,
we captured the signal profiles of a subset of letters of the
Deafblind Manual alphabet with high spatial resolution using
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Fig. 2. A) Measured whole-hand mechanical responses for a subset of the Deafblind Manual alphabet. We found that the contact is not only reflected in
skin responses at the touched location, but also that this energy propagated outwards to regions on the skin, on both sides of the hand, far from the point
of contact. B) We found that the tactile gestures produced consistent, repeatable patterns of RMS acceleration across the hand (mean absolute correlation
> 0.95 within trials of the same gesture), while yielding very low correlations when comparing across trials of different gestures.

a sensor array encompassing the whole hand. By analyzing
this data, we identified that even letters that are highly
similar to one another in tactile sign contain unique signal
profiles, even when measured at locations removed from
the gesture contact. Informed by this finding, we designed
a compact, wrist-worn device to capture these propagating
signals without hindering natural manual movements and
tactile interactions. To demonstrate the utility of this system
for tactile communication, we illustrate the capacity of our
device to classify 26 different touch gestures—in this case,
the letters of the Deafblind Manual alphabet. We find that
the device can accurately discriminate between different
touched contact locations (e.g. digit II, digit V, or palm)
and between different types of touch contact (e.g. slides,
impulses, pinches, or squeezes). We show using simple,
supervised machine learning methods that such a device is
able to identify these 26 different gestures with above 90%
accuracy, even when trained on a small dataset.

II. WHOLE-HAND SENSING

A. Materials and Methods

In a first experiment, we surveyed the whole-hand me-
chanical responses produced during the signing of a subset
of letters from the Deafblind Manual alphabet. We used two
42-channel, 3-axis accelerometer arrays (Model LI3DSH,
ST Microelectronics) [12]. We captured data at a rate of
1300 Hz via a field-programmable gate array (FPGA) based
multichannel data acquisition board, with firmware on the
FPGA and software on a Windows PC. We affixed each
accelerometer in the array to the skin via doubled-sided
adhesive, with one array attached to the dorsal side of the
hand and the other to the palmar (Fig. 2B).

We captured the skin acceleration for 10 trials of 9 letters
of the Deafblind Manual alphabet (A, D, E, F, I, M, N, O, U),
signed on the palmar side of the hand through interpersonal
touch (i.e one person signs on the hand of another person).

Letters were chosen for high frequency of use (i.e. vowels)
and letter similarity (i.e. M and N, D and E). Because the
palmar surface of the hand was also covered with sensors,
we slightly shifted the signed location of M and N to
avoid interfering with the sensors. The palm was held facing
upwards, with the forearm stabilized against the edge of a
table at chest-level to minimize noise from spurious hand
movements. The data consisted of ten, 84-channel 3-axis
acceleration signals for each letter. The data was de-meaned
and bandpass filtered, then compressed to a single axis by
computing the magnitude of the vector. We then computed
the RMS of the acceleration magnitude.

To determine the spatial distribution of acceleration energy
for each gesture class, we compute root mean square (RMS)
acceleration over all trials. We interpolated these data using
coordinates obtained from an anatomically plausible 3D hand
model using squared distance weighting. We analyzed the
differences between letters using this data and also computed
the mean pairwise absolute correlation (Pearson’s r) between
the RMS acceleration of all trials and of all letters.

B. Results

Each tactile gesture class yielded distributions of RMS ac-
celeration that reflected the contact location and the nature of
the gesture (single touch - A, E, I, O, U and multi-touch - D,
F, M, N) (Fig. 2A). For example, the peak RMS acceleration
of the letter E was localized to the point of contact. Multi-
touch gestures tended to deliver high RMS acceleration
(relative to the peak RMS acceleration for that gesture) to
locations far from the point of contact, reflecting that the
contact location on the hand was much larger (2-3 times the
size of the contact for single touch gestures). Furthermore,
all gestures delivered energy to the wrist; the amount of
RMS acceleration delivered at the wrist was a function
of the distance from the contact location (e.g. the contact
location for E is much further from the wrist than for M/N).
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Fig. 3. A) Wrist-wearable device using four accelerometers affixed to the skin to capture mechanical vibrations produced during tactile fingerspelling.
B) Measured accelerometer signals produced during a single trial of each letter of Deafblind Manual alphabet. Palm tap and finger tap gestures (B1 and
B2, respectively) produced transients that rapidly decayed. Finger taps tended to deliver less energy to the wrist when compared to palm taps, reflecting
the difference in distance between the point of contact and the sensor. Sliding or pinching/grabbing gestures (B3 and B4, respectively) produced signals
that tended to decay at a much slower rate on the skin, reflecting that the gesture occurs over a longer time scale than the tap gestures.

The tactile gestures elicited vibration patterns that were
consistent across gesture instances (Fig. 2B), and were
qualitatively distinct from the other gestures. Consistent with
the observations of the whole-hand patterns (Fig. 2A), some
gestures produced similar distributions of RMS acceleration
and thereby high correlations (i.e. M/N and D/E/F). For the
subset of data captured by the ten accelerometers located on
the wrist, averaged within-gesture mean absolute correlations
of the RMS acceleration (0.94) were substantially larger than
across-gesture correlations (0.48). These results suggested
that acceleration information captured at the wrist could be
used to classify varied tactile gestures.

III. WRIST-WORN INTERFACE

Informed by the preceding findings, including the extent
to which similar information could be captured via sensors
at locations removed from the point of contact with the hand,
we designed a smart bracelet using a minimal arrangement
of sensors located at the wrist. We evaluated the utility of
this device for classifying touch contact gestures performed
on the hand, in the form of TSL gestures.

A. Materials and Methods

1) Device Design: The device was composed of an ABS
shell enclosing two Adafruit Feather M0 WiFi microcon-
trollers. It employed a total of four 3-axis analog accelerome-
ters (Analog Devices ADXL335) (Fig. 1A). Each sensor was
adhered to the skin. Pairs of sensors were positioned 25 mm
apart on both the palmar and dorsal sides of the wrist (Fig.
3A), at locations determined from the preceding experiment.

The casing for the electronics was designed to avoid mechan-
ically disturbing the sensing elements. The data was captured
at a sampling frequency of 1250 Hz and at a resolution of
12 bits using the onboard ADC of the microcontroller.

2) Collection of TSL Data: We collected accelerometer
measurements during TSL touch contact in each of two
conditions: one in which the signer performed gestures on
their own hand (self-sign, or SS, depicted in Fig. 1B2)
and one in which the signer contacts another person’s hand
(interpersonal-sign, or IS, depicted in Fig. 1B3). The palmar
surface of the hand, held outstretched and flat, was facing
upwards throughout data collection, with the dorsal side
of the forearm stabilized against the edge of a table to
minimize disturbance from unintentional limb movements.
In both conditions, we recorded 40 trials of each of the 26
letters.

3) Signal Processing and Feature Extraction: The data
for each letter were segmented, lowpass filtered at 250
Hz, and compressed from 3 axes to 1 axis using principal
component analysis (PCA). After compression, the data for
each trial was normalized independently,

yc,n =
yc,n

max{c,n} |yc,n|
(1)

where n is the sample number and c is the channel number.
This preserved the inter-channel differences between
accelerometers, while also reducing inter-trial variability
of the same gesture and improving the consistency of the
feature estimates across gestures.

For every trial, we computed time-domain, frequency-
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domain, and spectro-temporal features for all 4 channels of
each analyzed segment, yielding 96 features per trial. The
time-domain features were peak-to-peak amplitude

PTPc = |max
n

yc,n −min
n
yc,n| (2)

and mean absolute deviation

MADc =
1

N

N∑
n=1

|yc,n − ȳc| (3)

where ȳc is the mean of signal yc,n. This yielded a total of
8 time-domain features per segment.

For the second set of features, we computed the Discrete
Fourier Transform (DFT) of each of the normalized signals,
Yc,k = F{yc,n}, where F is the DFT. From the frequency-
domain representation of the signal, we computed the
spectral centroid

SCc =

∑N
k=1 fk|Yc,k|∑N
k=1 |Yc,k|

(4)

where fk is the center frequency of bin k and |Yc,k| is
the magnitude of bin k for channel c. In addition, we
computed the center frequency of the DFT bin with the
largest magnitude for each channel c,

Fc = fk∗ s.t. k∗ = arg max
k
|Yc,k| (5)

We computed the mean and standard deviation of the
DFT bins over a 50 Hz bandwidth. Let the bandwidth
bi ∈ {[0 50], [50 100], [100 150], [150 200], [200 250]} for
i = 1, ..., 5. We associate the set of bins Ki whose center
frequencies lie within bandwidth bi and compute:

µc,bi =
1

|Ki|
∑
k∈Ki

|Yc,k| , (6)

σc,bi =

√
1

|Ki|
∑
k∈Ki

(|Yc,k| − µc,bi)
2 (7)

where |Ki| is the size of set Ki. This produced 40 features
(2 measures × 5 bandwidths × 4 channels), for a total of
48 frequency-domain features.

Finally, we composed a set of spectro-temporal features
to capture temporal variations in the spectral envelope of
the signal. We computed the Short-Time Fourier Transform
(STFT) of the signals (window size K=256 samples, 50%
overlap, Hanning window), yielding a matrix of Fourier
coefficients (M ×K) for each channel c where each of the
M rows is the DFT of the signal over different times. We
computed the mean and standard deviation of the measure
µc,bi (see Eq. 6) for each row of the Fourier matrix. Let
µc,bi,m be the mean of bandwidth bi for channel c for row
m. We compute

µSTFT
c,bi =

1

M

M∑
m=1

µc,bi,m , (8)

σSTFT
c,bi =

√√√√ 1

M

M∑
m=1

(µc,bi,m − µSTFT
c,bi

)2 (9)

This yielded another set of 40 features (2 measures × 5
bandwidths × 4 channels). All features (temporal, frequency,
and spectro-temporal) were concatenated to form a 96-
dimensional vector, used to train the machine learning model
and classify the 26 different tactile gestures.

4) TSL Classification: To distinguish the 26 letters of the
Deafblind Manual alphabet via our smart bracelet, we pass
computed features into three common supervised machine
learning classification models: a support vector machine with
a linear kernel (SVM), logistic regression with PCA (LR),
and a random forest model (RF). To minimize bias during
training and classification, we employed a 10-fold cross-
validation procedure with a 90-10 train-test split. During
each classification run, we computed the mean and variance
of each feature in the training data and used these sample
moments to whiten both the training and testing data. We
performed classification for each mechanical dataset sepa-
rately (SS and IS conditions, 40 trials per letter) and on both
datasets (combined condition, 80 trials per letter).

B. Results and Discussion

1) Mechanical Signal Profiles: We found that the mea-
sured signals (Fig. 3B) yielded noticeably different time-
domain acceleration responses, which became more promi-
nent when we grouped the gestures by palm taps (Fig. 3B1),
finger taps (Fig. 3B2), slides (Fig. 3B3), and pinches/grabs
(Fig. 3B4). We found that tapping gestures yielded transient
signals that decayed rapidly, while slides and pinches/grabs
decayed at much slower rates in the skin. This likely reflects
the variation in contact conditions between the gestures, for
which slides and pinches/grabs occur at much longer time
scales. We found that finger taps delivered less energy to
the wrist when compared to palm taps, reflecting that the
properties of the skin, which is a highly damped medium,
play a role in encoding the distance from the contact location
to the wrist, thereby differentiating the measured tactile
gestures. Finally, we found that sliding gestures, regardless of
contact location, tended to deliver less energy to the wrist, but
that this energy was nonetheless measurable and informative.

2) TSL Classification: When utilizing data from all four
sensors, the SVM classifier consistently outperformed the
RF and LR classifiers in the SS and IS conditions, with
average accuracies greater than 93% across cross-validation
folds; in the combined condition, the RF classifier slightly
outperformed the others at close to 90% average accuracy
across folds (Table I). High performance using SVM is
promising for real-time applications, as a trained SVM model
can easily be implemented on a micro-controller without the
need for additional computational power. In the following
analysis, we focus on the performance of the SVM model.

We further analyzed classification performance using dif-
ferent subsets of sensor channels (Fig. 3A) to determine
the minimal number of sensing element required for ro-
bust classification. The subsets considered include all four
channels (α, β, γ, δ), two channels on the palmar side of
the wrist (α, β), two channels on the dorsal side of the
wrist (γ, δ), one channel on the palmar side of the wrist
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Classifier
Dataset SVM RF LR

SS 93.9 88.7 90.6
IS 93.7 92.2 91.0

Combined 86.3 89.4 76.1

TABLE I
AVERAGE CLASSIFICATION ACCURACY (%) ACROSS DATASETS AND

MODELS FOR 4-SENSOR CONFIGURATION

Sensor Configuration
Dataset α, β, γ, δ α, β γ, δ α, γ α γ

SS 93.9 86.5 86.8 87.1 76.3 73.8
IS 93.7 88.3 85.4 87.1 75.0 75.4

Combined 86.3 76.8 75.6 78.4 61.6 64.3

TABLE II
AVERAGE CLASSIFICATION ACCURACY (%) ACROSS

DATASETS AND SENSOR CONFIGURATIONS FOR SVM MODEL

(α), and one channel on the dorsal side of the wrist (γ).
Table II summarizes the average classification accuracies
across cross-validation folds for the SS, IS, and combined
datasets. The use of all four channels yields the highest
classification accuracies, but the employment of just two
sensors maintains robust performance (above 85% in the
single subject conditions), indicating that they are sufficient
for detecting various sets of tactile gestures. Mounting the
sensors on the palmar or dorsal side of the wrist does not
significantly change classification accuracies. On the other
hand, classification accuracy drops significantly when using
only one sensor, indicating that inter-channel differences
encode relevant classification information that cannot be
discarded. Close inspection of the signals shown in Fig. 3B
shows differences in the phase and shape of signals between
channels, most evident in the sliding gestures.

We found that the most commonly misclassified letters
were L and N, which is expected due to the similarity of the
tactile gestures; N is signed with two fingers in the center
of the palm whereas L is signed with one finger in the
same location (Fig. 4). Additionally, R and T are commonly
mislabeled, as they are both taps occuring near the same
palmar location: T with one finger and R with two fingers.
Other commonly misclassified letter pairs include G and X,
and W and Z. The former are gestures performed with the
signer’s whole hand, producing high acceleration signals at
the palm; the latter produce similar high energy signals, but
occur at different locations on the hand.

We also examined classification accuracy within each ges-
ture grouping shown in Fig. 3B (i.e. palm taps, finger taps,
slides, and pinches/grabs) for the combined dataset in the
four channel configuration, averaged across cross-validation
folds. Sliding gestures are classified with the highest accu-
racy (92.8%), likely because they produce the most distinct
mechanical signals. Finger taps are also accurately classified
(90.8% accuracy) and are generally only misclassified as
other finger taps, likely because the captured signals often
possess similar magnitudes and temporal profiles. Similarly,
palm taps (81.1% accuracy) are accurately recognized and
are typically only misclassified as other palm taps. This

Fig. 4. Confusion matrix for the linear SVM Classifier on the combined
dataset, with per-letter accuracies along the diagonal. On the off-diagonal,
type I (false positives) read column-wise and type II (false negatives) read
row-wise. Commonly misclassified letter pairs can often be grouped into
the subsets introduced in Fig. 3. For example. {E,D} are both taps on digit
II, and {G, X, Z}, {L, N}, and {R, T} are all taps on the palm.

is expected when considering the similarity between many
of the palm taps; for example, L, M, N, and V are all
signed in the middle of the palm but with different finger
placements. Finally, pinch or grab gestures (83.8% accuracy)
are somewhat more likely to be misclassified as other types
of gestures due to their heterogeneous nature.

Regardless of the classifier, dataset, or sensor
configuration, we observe accuracies above 60%, which is
significantly higher than chance (3.9% for 26 classes). In
the majority of SS and IS conditions, accuracies are above
90% when using four sensors, regardless of classifier used.
This indicates that accuracies approaching 100% can likely
be achieved via standard techniques such as lexicon-based
models that are widely used in natural language processing
and automatic speech recognition. Further improvements
might also be achieved through the use of state-of-the-art
multi-layer neural network classifiers.

IV. CONCLUSION

We present a smart bracelet system that transforms the
skin into a touch gesture input interface. The bracelet can
classify touch gestures of the Deafblind Manual alphabet, via
integrated wrist-worn sensors, with significantly higher-than-
chance accuracy. Our approach demonstrates the success of
minimal accelerometer-based sensing that leaves the hand
unencumbered for manual interactions and movements. Mea-
surements from a whole-hand sensing array were used in an
initial exploration to identify a subset of four sensors that are
able to capture enough salient information in a touch gesture,
thus reducing cost and complexity. We demonstrated the
utility of this device for supporting tactile communication via
TSL. We present analyses of an experiment in which we cap-

978-1-6654-2029-7/22/$31.00 ©2022 IEEE 2022 IEEE Haptics Symposium (HAPTICS)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 27,2022 at 21:06:29 UTC from IEEE Xplore.  Restrictions apply. 



tured and accurately classified signal profiles for all 26 letters
of the Deafblind Manual alphabet, demonstrating promising
uses of such systems for supporting tactile communication.

The smart bracelet can be used for input via tactile
gestures performed on the hand of the user by the user, which
could be useful for note-taking, transcription, or textual
communication. Such a device could support interpersonal
tactile communication by individuals who prefer using
touch over other modalities, in addition to encoding touch
in the digital domain. These findings may also enhance the
utility of output devices for tactile communication. Utilizing
input and output devices in conjunction could support
communication between two or more individuals, including
people who may communicate via different TSLs.

While we have demonstrated the capability to accurately
classify the 26 gestures of the Deafblind Manual alphabet,
more remains to generalize features for classification of
larger mechanical datasets consisting of various TSL signers,
receivers, and alphabets. Further investigation into individual
differences between subjects, such as hand size, signing
speeds, and emotion (i.e. happy, angry) conveyed through
TSL, will be experimentally investigated.

We further envision supporting real-time classification of
TSL, where signing occurs as fast as five letters per second
[6]. In these cases, intentional or accidental movements of
the hand (such as finger motion from a previously performed
tactile gesture) must not interfere with signals captured from
the sensors. Thus, further data capture and signal processing
methods will be explored, examples of which include cap-
turing data from two devices worn on both the signer’s and
receiver’s wrist, or capturing false positive dataset examples
(such as muscle contractions, finger twitches, etc.) to help
identify gestural noise versus salient gesture data. We will
additionally explore multi-layer classification and feature
optimization by additional meta-analysis of similarities and
differences between tactile signals in a gesture set, as well as
natural language processing as previously applied in speech
technologies. Such advancements are expected to improve
accuracy and robustness, aiding applications in natural com-
munication. This system holds promise for supporting tactile
communication, including scenarios where it is paired with
a haptic communication output device, to address communi-
cation needs of individuals who are deafblind.
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