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Pattern theory provides a set of principles for constructing
generative models of the information contained in natural
signals, such as images or sound. Consequently, it also
represents a useful language within which to develop
generative systems of art. A pattern theory inspired
framework and set of algorithms for interactive computer
music composition are presented in the form of a
self-organising hidden Markov model — a modular, graphical
approach to the representation and spontaneous organisation
of sound events in time and in parameter space. The result
constitutes a system for composing stochastic music which
incorporates creative and structural ideas such as
uncertainty, variability, hierarchy and complexity, and which
bears a strong relationship to realistic models of statistical
physics or perceptual systems. The pattern theory approach
to composition provides an elegant set of organisational
principles for the production of sound by computer. Further,
its machine learning underpinnings suggest many interesting
applications to emergent tasks concerning the learning and
creative modification of musical forms.

1. INTRODUCTION
1.1. Structure and spontaneity

Tension between determinacy and indeterminacy pro-
vides some of the most compelling motives in music,
especially in technological music, where the means
are available to construct computational models
which readily span the two. Indeterminacy poses an
especially interesting problem for the performance
of computer music, which tends to invite fine, time-
varying control, that requires a tremendous amount of
data for its specification. An irony contained in the
engineering of indeterminacy for such systems, which
look at first glance to be hopelessly over-determined, is
that uncertainty in any live performance, especially
(but not exclusively) those involving direct human
intervention, is a physical and inevitable fact which is
essential to the character of being live.

One way to avert a possibly disruptive collision
between indeterminacy and control is to develop
appropriate models for structured uncertainty that
can be used interactively in a performance setting. The
structure in these models may be formed by design,
through a process of variation, or spontaneously,
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emerging out of a state of apparent disorder. Phen-
omena in which discrete and unexpected global
behaviours arise through symmetry-breaking occur
in certain continuum or quasi-continuum physical
systems, including ones which are qualitatively well
described by statistical models such as that proposed
here. For example, a loss of homogeneity in space or
time is associated with the breaking of translation
symmetry, corresponding to the development of
spatially or temporally local variations. In physics,
the breaking of a continuous symmetry is typically
accompanied by a change of phase. Continuum or
quasi-continuum physical models can have a single
phase, or they may have several (Cardy 1996). Transi-
tions from one phase to another may be monitored
at any time through the values of certain parameters
which indicate the scale of the typical fluctuation
away from an ordered state; for example, a tempera-
ture variable relative to some critical value, or the
magnitude of an external magnetic field.

1.2. The statistics of patterns

The machine understanding of patterns in the real
world, including those encoded in musical signals, is
a primary goal of the computation of perception.
Pattern theory is a term coined by Ulf Grenander
(Grenander 1976, 1996) to describe a particular statis-
tical approach to the analysis of complex structure in
natural signals, including sound, images, and the
weather. By contrast with pattern recognition, whose
focus has been the classification of signals according
to their information content, the main aim of pattern
theory is to find families of statistical models which
can, through a process of adaptation to observed data,
capture the qualities of the patterns which are seen in
nature, in such a way that random samples from the
adapted models provide the same ‘look and feel’ as the
samples from the natural world (Mumford 2002). Due
in part to a common emphasis on the representation
of pattern information in natural systems, including
sources of variability, pattern models overlap in
interesting cases with those of statistical physics, such
as were mentioned above, and there is a commonality
of algorithms used for their analysis. A characteristic
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Figure 1. Snapshots of an order—disorder transition in a two-dimensional magnetic Ising Model, as applied to the image of

a cow standing in a field (reproduced with permission from Mumford 2002). In the lower row of images, temperature

decreases from left to right. At each temperature, a dynamic model exhibiting random fluctuations relative to cow-image
dependent properties exists, and above a critical value of the temperature, the model approaches disorder.

example is the two-dimensional Ising Model, which is
used in statistical physics to model phase transitions,
such as are seen in certain magnets at finite tempera-
ture, and in computer vision as a probabilistic model
for the segmentation of an image into its constituent
shapes (figure 1).

In both pattern-theoretic and statistical physics
settings, probability serves to model those uncertain-
ties which are intrinsic to the task and signals, which
are too complex to be represented explicitly, or which
are irrelevant to the primary phenomena which it is
desired to analyse. In this respect, its function is,
on one hand, to capture the salient properties of a
complex system, and thereby reduce the number of
variables. On the other hand, it is to provide a measure-
ment of the accuracy of a given model M relative to
a natural signal S which it is supposed to represent.
This measurement is frequently cast in the form of a
probability functional P(S | M) indicating how likely
the signal would be to have been produced by the
generative model M. A key consideration is the degree
to which characteristic features of the signals being
studied (i.e. the symmetries, interdependencies and
correlations which distinguish them) are captured by
the model, once it is adapted to the observed signals. As
mentioned above, the comparison of random samples

from the distribution P(S | M) with the original set of
signals may be used to reveal the degree to which these
features have been preserved.

1.3. Generative pattern models, naturalness and
variation

The foregoing discussion raises issues relevant to the
creative algorithmic generation of sensory informa-
tion. Especially noteworthy is the emphasis which the
fields mentioned have placed upon the development,
through structural and parametric design, of analytic
models which are specifically generative, and capable
of synthesising probabilistically varied, natural-feeling
sensorial data. The generation of patterns with percep-
tually natural qualities is closely related to the problem
of producing synthetic signals with the nuances that
are required to make them seem realistic. A common
application of statistical analytic techniques from
this area is that of texture generation, which is an
important problem in image and graphics synthesis
(DeBonet 1997). In sound synthesis, Recht and
Whitman (2003) have described statistical audio
analysis techniques related to those used in this
paper, in application to the steerable generation of
perceptually similar families of sound textures.



A related topic — the treatment of variation in
pattern models — addresses two issues which are
particularly interesting for generative or synthetic art.
First, such systems allow, by virtue of their statistical
nature, to encode and organise the complex sources
of variability, on one or many scales, that are intrinsic
to natural signals, and which lend them a realistic
quality. Examples include random textural variation
or temporal jitter. This role is qualitatively similar to
that played by residual modelling in some analysis/
synthesis systems used for computer music.

Second, they permit the incorporation of systematic
causes of deformation or variation in the signal
domain. For example, probabilistic contextual models
for the time ordering of events (which are typically
organised as Markov chains) are employed to account
for user-biased local temporal variability in signals,
such as speech or music. In automatic speech recogni-
tion applications, this organisation permits one to
compensate for time-varying rates of speech (Rabiner
and Juang 1993), and in synthetic applications to
computer music, it can facilitate time-scale modifica-
tions of the parameterised sound (Depalle, Garcia and
Rodet 1993).

An added advantage of such models is their integra-
tion, in addition to parameters which characterise the
signal at any point on its domain (which is time, in the
case of sound), of hidden variables that may be used
to independently control the implicit structure of the
signal domain, or in other words the local context
which orders signal features. In the case of music
or sound, independent modelling of time and
parameter-space features is built into the representa-
tional structure of many, but not all, systems for
composing music. This separation is desirable because
it allows time and non-time parameters (for example,
spectral content parameters) to be manipulated
independently. The range of application and ease with
which certain effects may be achieved is thereby
enhanced and, in addition, the relationship between
model and data features is more transparent than it
would be otherwise, because model and data share
analogous domains.

The main example exhibiting these features which
will be described here (in section 2) is a trainable finite-
state parameter sequencing engine structured over a
Markov chain. It is a particular adaptation of what
is called a hidden Markov model (HMM), a statistical
pattern model that has found diverse application
in the engineering of systems which deal with
time-dependent signals.

1.4. Machine understanding of musical patterns

A great deal of work with analytic statistical models,
including the hidden Markov model, has been applied
to the understanding of patterns contained in musical
signals, on time scales ranging from the composition
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to the microsound. In data-driven statistical analysis
problems, a model is trained on a corpus of musical
or sound material which is representative of those
attributes which it is desired to capture, such as timbre,
compositional structure, or pitch. Certain applications
are oriented toward the analysis of musical material
for the purpose of simple classification of sounds,
parts or compositions. In others, an algorithm is
applied subsequent to the analysis which allows one to
produce from the model so trained new music or
sound material having similar attributes to what was
analysed. This is also the approach to musical analysis
that pattern theory, as described above, suggests. The
production of new examples from a trained model
provides an important test for its performance. As
Conklin asserts in a review of music generation from
statistical models, ‘the topics of creative music genera-
tion and analysis are in fact highly interconnected, and
... in principle there is no need to make the classical
distinction between analytic and synthetic models of
music’ (Conklin 2003).

Much of the research to date with data-driven
generative stochastic models applied to music has been
oriented toward creating computer programmes that
are capable of automatically composing in existing
styles of music. Partly this represents an approach to
mitigating the methodological problems tied up
in evaluating the fidelity of automatic composition
systems, but the development of systems for composi-
tion in historical styles of music (baroque; jazz
improvisations) undoubtedly also reflects a desire on
the part of researchers to present their work in a way
that is stylistically accessible to a wide audience. From
one standpoint, it is somewhat surprising that there
has not been an explosion of interesting recordings
produced from the many systems that have been
developed for the simulation of established styles of
music. Furthermore, the more interesting creative
inquiry — whether an artificial composition system is
capable of generating new kinds of music — lies unad-
dressed by such endeavours. This question lies closer
to the spirit which drove earlier innovations in the
stochastic approach to music, which were interested in
providing new principles that could be applied to the
composition of complex music (Xenakis 1971). In
addition, experience suggests that the kinds of creative
tasks to which humans and computers are well
adapted are very different. An example of an exciting
emergent application where computers are likely to
outperform people is the creation of data-driven audio
mosaics from collections of sound material (Schwarz
2000; Zils and Pachet 2001; Lazier and Cook 2003).

1.5. Other related work

Computer music has exploited algorithmic and
statistical models since its origin, and since nearly the
beginning of the computer age. The use of stochastic
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models for the organisation, composition and perfor-
mance of music with computers is by now relatively
popular (Zicarelli 1987). Some past and quite recent
attempts at the reproduction of compositional styles
using data-driven or heuristic artificial intelligence
techniques are reviewed, for example, in Conklin (2003)
and Papadopoulos (1999).

Continuous density HMMs, such as underlie the
system described below, have seen tremendous success
in application to problems in time-domain pattern
recognition, including speech recognition (Rabiner
1993) and gesture recognition (Yang 1994). Related
pattern models such as the Markov random field have
been widely used in applications to image texture
synthesis (DeBonet 1997) and computer vision (Li
1995).

Following their advance application to automatic
speech recognition, hidden variable probabilistic
models, such as HMMs, were employed in computer
music to analyse musical sounds for subsequent
resynthesis. Depalle (1993) utilised sinusoidal partial
tracking, while the work of Schoner (1999) was based
on adapting weights for a set of Gaussian mixture
models. The system described in Donovan and
Woodland (1999) uses hidden Markov models for
an optimal synthesis of high-quality concatenated
speech, and that in Yoshumura et al. (1999) takes a
spectral approach to HMM-based speech synthesis.

A body of recent work related to score following
(Orio and Dechelle 2001) and performance following
(Orio 2001; Raphael 2001) exploits trainable, probabi-
listic hidden variable networks.

A subset of work in musical artificial intelligence
(AI) seeks to apply artificial neural networks to
composition (Papadopoulos 1999) and synthesis
(Hartmann 2003). Other applications of neural
networks to music and sound are described in Griffith
and Todd (1999). Because these artificial neural net-
works frequently have a loose perceptual motivation,
and resemble some structures through which patterns
are learned in the brain, it is tempting to compare them
with pattern theoretic tools such as those described
here. However, one essential difference is that the
standard artificial neural networks do not attempt to
model directly the native domain of the signal (time, in
the case of sound signals). Consequently, the possibili-
ties for structural refinement based on the analysis of
output relative to natural signals are more limited.
Some perceptual considerations for Al-based auto-
matic composition systems are described in Purwins,
Blankertz and Obermayer (2000).

Finally, HMM methods are attaining substantial
application (Birmingham 2002) in music retrieval
research. The MPEG-7 multimedia content descrip-
tion framework includes general sound recognition
tools. Based on hidden Markov models, the tools are

intended to be used for the automatic classification of
sounds and for computing similarity metrics between
sounds, oriented toward music retrieval applications
(Casey 2002).

2. THE SPONTANEOUSLY ORGANISING
HIDDEN MARKOV MODEL

Pattern theory and statistical physics serve as impor-
tant sources of inspiration for the present approach to
algorithmic sound. As was mentioned above, HMMs
have attained widespread use for the statistical model-
ling of diverse time-dependent processes. A fusion
of this pattern model with stochastic compositional
methods is attempted here in an effort to construct
a novel interactive algorithmic composition system
out of a tool which is also valuable for the analysis of
general musical or non-musical sound.

2.1. Overview

The HMM described here is intended as an interactive
sequencer for generating patterned data in real time,
for consumption by parametric media synthesizers
(figure 3). A composer might begin with the model as
a statistical sketch of a composition, at the desired
level of detail, and improvise with it, either to guide a
performance or for data generation in the studio.! An
illustration of the use of a spontaneously organising
HMM as a statistical musical composition is given in
figure 2. The input of the model is an excitation source,
each excitement of which elicits a chain of note-events.
The output is a set of time-varying parameter values
intended to specify the sounds that are produced.

The composition is represented by a network
consisting of ‘statistical notes’ and weighted connec-
tions between them. By ‘statistical note’, it is meant
that the note has some properties (e.g. pitch) which are
probabilistic, rather than assigned fixed values. The
time domain is modelled as a Markov chain, which
facilitates the flexible organisation of the statistics of
the possible time progressions of sequenced events.
Each note is associated with a set of probability
densities describing the likelihood for each parameter
associated with the note to attain the different values
in its range. In addition, there is a fixed duration
for each note. It is not normally important which
sequence of notes resulted in the parameter curves that
are produced; for this reason, the note sequence is said
to be ‘hidden’. During performance, the composition
is excited and control is exerted by the user. The details
are explained in the subsections below. Several
applications are described in section 3.

'The approach outlined here can apply to any time domain media. I
will refer to music for concreteness in what follows.
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Figure 2. Illustration of the use of the HMM as a statistical musical composition. The score is represented by a network

consisting of notes and weighted connections between them. Each note has a duration, as well as a set of probability densities

describing the likelihood for each parameter to attain the different values in its range. During performance, the composition is
excited and control is exerted by the user, influencing the set of time-varying parameter values that are generated.
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Figure 3. System architecture. Control is afforded through a set of parameters which influence the evolution of a statistical
model, and the real-time adaptation of its parameters. The data which is generated is passed to a synthesis engine which is
responsible for rendering the time series of parameters as sound or other media.

This system is related to current directions in the use
of analytic pattern models in computer music and to
the history of stochastic methods for the composition
of music (Xenakis 1971). The aim is to facilitate music
at time scales spanning the range from microsound
(synthesis) to macrosound (composition, perfor-
mance, installation). Its flexibility of application is
intended to be enhanced by virtue of its homogeneity
and scalability. A further advantage is the increased
modularity suggested by the separation of control
and synthesis components, allowing for coupling
with synthesis models having different characters or
applying to different senses. This complete factoring
of synthesis and control models is similar in spirit to
that provided in sound server applications, such as the
Supercollider 3 language (McCartney 2003).

2.2. hmmm: spontaneously-organising hidden Markov
model for Max

The present, spontaneously organising application of
the HMM models a distribution for the succession and
time of onset of musical events or changes in musical
or other performance-related parameters. An imple-
mentation in the form of an external for Max/MSP
(Cycling’74 2003) may be freely downloaded from the
author’s website (Visell 2003).

The idea of the continuous density HMM approach
to parameter synthesis (figure 4) is that one has a
finite-state automaton for the production of a time
sequence of parameter vectors. This automaton is
specified by primary variables which are capable of
modelling the continuous distribution of musical
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features, and secondary ones that parameterise
variability in the time domain. It consists (Rabiner
1993) of the following ingredients:

® A setof Kstates S = {s,, 55, 53, . . . , 5S¢} modelling
a discrete time progression of events.

® A set of time durations, one for each state.

® A set of transition probabilities, from each state
to every other state, 7, = P(s; | s,).

® An N-dimensional continuous parameter space V
from which the generated sequence of vectors of
parameters 0,0,, .. . is to be selected.

® A set of continuous probability distributions
P(0|s,) for a vector of parameters ¢ to be
generated by each state 5.

The Markov property states that the probability for a
transition to the next state depends only on the current
one. The term ‘hidden’ refers the fact that the observed
sequence of parameters {0), 0>, . .. } is not uniquely
associated to the state sequence which produced it,
and is normally to be inferred only probabilistically
from the state sequence. Because the current applica-
tion involves sampling from the statistical model, the
actual state sequence which produced the observed
parameter sequence is available as well.

At each state s, the continuous probability density
P@|s) on the N-dimensional space of musical
parameters is given the form of a weighted mixture

M
P(a | S) = Zwot G(67 ﬁu’ Zu)
a=1

Probability
b P(ols

of M normalised Gaussian functions

1
det(2n Y, )2

.. ., L
exp|—5 (i, —0) > (i,—0)

G0, fi,,22,) =

The parameters specifying each probability density
are:

® M N-dimensional mean vectors, p,, o0 =1... M
® M N-by-N variance matrices X,
® M weights w,

The probability normalisation condition requires that
the weights at each state sum to one.

Any state may be marked as non-emitting, in which
case no parameter will be produced by it, allowing it to
act as a pause, temporal gap, or rest. Furthermore, a
state is allowed to have a duration of zero. A typical
application of a zero-duration non-emitting state is
to act as a proxy gateway, assigning probabilities
for various states in the network to act as an entryway.
A state may also be identified as an exit to the
network, so that no subsequent transition takes place,
thus serving as a possible terminus for a sequence.

Sequences of parameter vectors are produced in real
time according to the time delays and connectivity
of the directed graph that underlies the model, reca-
pitulating the paths of virtual symbolic tokens through
it (figure 5). A sequence begins with the entrance into
the network of such a token at any desired state s,. The

Continuous Parameter

Range

40 ms

Discrete Temporal
State Space

40 ms

Figure 4. Structure of the graphical, finite-state model for musical parameter synthesis. Time is prescribed as the collection of

nodes of a weighted directed graph, each having a fixed duration. Weights assigned to the edges give the probability for a

particular transition to occur. Musical parameters at each state are modelled by a probability density on a continuous space
of N dimensions.



default entry point is the first state. If the state is emit-
ting, a parameter vector is produced by sampling the
continuous probability density function at s, After a
time given by the duration assigned to the state, a new
state s; is selected, a parameter vector is produced by
the state, and the process continues until, for example,
an exit state is encountered.

An arbitrary number of tokens in the network
may be active at any given time, limited only by
user-controlled settings and computational resources,
with the result that between one and hundreds or more
interwoven streams of parameter sequences may be
produced concurrently from a single model instance.

2.3. The assignment of model data

An application of the HMM requires the specification
of an initial set of model parameters and properties.
The structural scale of the model is determined by
the choice of a number of states K, the dimension
of the musical parameter space N, and the number
M of Gaussian components of each mixture in the
probability distribution of each state. The quantity
of parameters corresponding to each type of model
parameter is listed in table 1.

2.3.1. Variances and independent controls

It is sensible to adopt a simplified, diagonal form for
the variance matrices whenever possible. Such a choice
significantly improves the convergence of a parameter

p1
A

State 1
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Table 1. The number of each type of model data. K is

the number of states, M the number of Gaussian compo-

nents of each mixture, and N is the dimension of the musical
parameter space.

Parameter Type

Number of Values

Mean Vectors

Variance Matrices
Diagonal Variances
Mixture Weights
Transition Probabilities
State Durations

NxMxK
Nx(N—1)x Mx K
N Xx Mx K

M x K

K x K

K

adaptation algorithm such as that described in the
next subsection, by reducing the number of variance
components to be adapted by a factor of N —1.
Employing diagonal variances is justified under the
assumption of decorrelation among the components
of the sequenced parameters (Rabiner 1993). For
multivariate Gaussian distributions, decorrelation is
equivalent to statistical independence. Consequently,
if the sequenced parameters are the controls of
independent features of a musical process, then the use
of diagonal variances is statistically optimal (and
it provides an approximation which is more natural
to the degree that this is the case). For example, the
independent musical features could be the amplitudes
of what are desired to be independent sources in a mix,
or the values of perceptually independent timbre space

/ -7

,” . State 3

State 4

» P2

Figure 5. A sequence of parameter vectors, labelled ‘x’, in a two-dimensional parameter space or subspace, generated from

a model composed of single Gaussian mixture states. The dashed line indicates the discrete sequencing path followed by

a virtual token in the network of states (i.e. | — 2 — 3 — 4). Darker areas are regions of higher probability for each Gaussian
distribution.
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parameters (Grey 1977). From the analysis stand-
point, the MPEG-7 content description format defines
standard methods for extracting decorrelated spectral
basis functions from analysed sound, based on the
Independent Components Analysis (ICA) algorithm.
Similar methods were applied to a synthesis-by-
analysis of sound textures using characteristic spectral
templates in Recht (2003).

2.3.2. Initialisation algorithms

Assumptions about statistical independence notwith-
standing, the amount of data required to specify the
model can be quite large. In practice, some algorithm
or automated procedure is required to fix initial
values. Apart from assigning the same data to all
states, which may be suitable for applications which
involve spontaneous organisation from disorder,
initial model data can be chosen by: random assign-
ment, through the use of algorithms computed from
state and mixture indices, or using values learned
from one or more data examples. The last may come
from data files written by an HMM recognition pack-
age such as HTK (Young 1994), or through models
shared using the general sound specification standard
MPEG-7 (Casey 2002).

2.3.3. Temporal structure

The transition data determines the model topology, or
collection of possible pathways in time. This should
normally be handled separately from the other para-
meters, because it can have a profound effect on the
results that are produced, determining such character-
istics as the minimum length of cyclic sequences of
states, the maximum length of non-repeating cycles
of states, and the local branching characteristics
between possible paths. Interesting model topologies
range from the highly ordered left-to-right class of
models, in which states are organised in a numerically
increasing linear fashion, each state connected only to
the next N states, to ergodic topologies in which each
state is accessible from every other state.

2.3.4. Hierarchical network organisation

A note on hierarchical applications, which model time
resolution at more than one scale, may be useful. Such
hierarchical structures can be found in many natural
and musical processes. They also manifest in general
artificial intelligence approaches, such as context-free
grammars, which seem to be relevant to perceptual
specialisation in music audition (Purwins 2000). A
multi-scale network may be defined by assigning sets
of nodes a hierarchy of durations, which might be
chosen to be on the order of at, a’t, a’t, . . ., where a
is a parameter determining a characteristic distance

between scales. The transition graph that organises
such a hierarchy may be constructed with the help
of a separate algorithm which assigns the transition
probabilities and durations. A more intuitive appr-
oach, which is also common in grammar-based
pattern recognition applications, is to build a hierar-
chy from a graph of graphs, mapping the exit states
of a given model onto the entry states of another
(figure 6). Within software such as Max/MSP, it is
easy to iterate the procedure of creating graphs of
graphs, so as to build a hierarchical structure of as
much depth as is required.

Such flexibility is an asset of pattern models which
are built over graphs. As stated in Jordan (1998):
‘Fundamental to the idea of a graphical model is the
notion of modularity: a complex system is built by
combining simpler parts. Probability theory serves as
the glue whereby the parts are combined, ensuring that
the system as a whole is consistent and providing ways
to interface models to data’.

2.4. Adaptation

The goal of adaptation as applied to the spontane-
ously organising HMM is not, as would be the case
in a conventional time-dependent pattern recognition
application, the learning of parameters describing
representative features of a class of patterns. Rather,
it is the interactive refinement of model parameters
in a way that is intended to form musical structures
in a spontaneous way, eliciting features like repetition,
variation and transience. This is accomplished by
adapting the model parameters at or near to a
state which has produced a given observation to the
observed parameters itself (figure 7). In brief, the
signal which samples the model is obtained through
the finite-state decoding of the network. For each
parameter vector that is produced, the model is
adapted in a way that increases the similarity between
the model and that sampled parameter vector. This
proceeds in greater detail as follows.

2.4.1. Training algorithm

First, a transition graph training rate { is defined,
where ( is greater than zero and not much larger than
one. After a transition from the state s, to the state s;
occurs, the transition matrix element between them is
updated according to

Ty— T+ ¢

and the new transition matrix is renormalised, to
insure probability conservation.

Once a new parameter vector ¢ is sequenced by
the model state s, the state is adapted in a way that
increases the similarity between the features of which
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Figure 6. An example hierarchy of structure, consisting of the microscopic level of detail modelled in the structure of each sub-
network, and meso- to macroscopic levels of detail determined by the organisation of the network of sub-networks. Solid lines
indicate sequencing paths that a token in the network may follow. Dotted lines indicate the routing of synthesised data.
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Figure 7. Diagram showing the use of the described model for real-time parameter sequencing, with adaptive feedback.

that state is characteristic and the sampled parameter
vector. For this purpose, a standard gradient ascent
approximation algorithm is employed (Press 1993).
This is done with the mixtures kept hidden: although
the observed parameter vector is attributable to a
single Gaussian component of the probability density
at s, each mixture is trained in proportion to the likeli-
hood that it produced the observation. The weighted
Gaussian quantity

L%(a) = WD( G(ﬁ, l_jaaza)

gives the likelihood that the observed parameter
vector o was produced by the o' mixture at the current
state. An observation space training rate A is defined,

where again A is not much larger than one. The model
parameters for each mixture are updated as follows:

w,— w, + AL,
za_’ zx + 7\’(.179( - 5)(ﬁu - 5)tLa

(The ¢ in the exponent denotes the transpose of the
column vector.) Subsequently, the weights w, have to
be renormalised for the given state.

The result is that, for moderate values of the training
parameters (on the order of 1.0), the model probability
distributions localise in tandem onto some trajectory
in parameter space (with caveats that are mentioned
below). The transition probabilities at each state
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sampled by the trajectory become dominated by a
single transition, the weight for one component of
the continuous probability distribution at each state
likewise dominates the others, and the N-dimensional
Gaussian distribution for the dominant weight peaks
sharply about a particular mean vector. Although
the optimal rate of convergence of such a descent
algorithm is relatively slow, the radius of convergence
is rather large. In practice, the procedure works well
without modifications provided N is not too big (say,
N < 11; see further remarks on this important caveat in
section 2.5).

2.4.2. Temporal smoothing

The adaptation mechanism described in the preceding
subsection is not, in distinction to algorithms used in
recognition applications, based upon training a model
with entire sequences of data (an approach which
benefits from considering a large set of hypotheses
about how the pattern could have been produced by
the model), but rather is one which trains states on
individual sequenced data vectors that have been
produced by them in particular. What is lost, relatively
speaking, are temporal correlations between the
probability distributions of adjacent states of the
model which could otherwise have been learned from
the sequenced data. A heuristic approach to bettering
this situation is adopted here. Rather than training the
state on the data vector d(n). produced at time ¢ = n,
one defines an integrating parameter v, whose value
lies between zero and one. One trains instead using the
time-integrated observation vector d(n) given by

d(n) =yo(n) + (1 =) d(n—1)

Using this procedure, the mixtures of a given state are
trained with a decaying time average of the observa-
tion vector sequence, with a time constant of T = 1/y
samples.

As described in the next section, the training process
may be influenced through real-time control of vari-
ous user-accessible parameters which are capable of
governing it.

2.5. Control, phenomenology and evolution

All of the statistical parameters defining the model
may be modified interactively. For example, the dura-
tions of all states might be scaled by the user during
pattern synthesis in order to modify the event density.
Except for small models, individual control of the
parameters at every state would be difficult, due to the
number of values which would need to be managed
in real time. However, in addition to those local
parameters, several high-level interactive controls for
initiating and influencing the global model behaviour
have been implemented (figure9). These control

options are not oriented toward the gestural control
of music, and in that respect are in harmony with
other approaches to computer music which concern
themselves with providing the performer with a set
of tools for controlled improvisational composition
in real time (e.g. Ableton 2003). A summary of the
interactive control parameters appears in table 2.

2.5.1. Balancing order and disorder

The training rates defined in the previous subsection
independently govern the rate at which patterns
are localised in time and in the observation space.
Working against the adaptive sharpening of para-
meters, minimum values for the transition probabilities
(figure 8), Gaussian mixture weights, and statistical
deviations may be fixed. Furthermore, a global order/
disorder parameter exists, analogous to temperature
in a statistical model such as the Ising model (figure 1).
It controls the scale of the statistical deviations of the
parameters.

2.5.2. Perturbing patterns

As an interesting result of the tension between training
and the minimum limit placed on the variances, once
a quasi-equilibrium state is reached, with a temporal
pattern of states being repeated in time (or nearly so),
a random walk of the variances may be effected.
This makes it possible to perform perturbations to
an established pattern which are controllable in scale
(but not in form), while keeping the time progression
of the pattern fixed. Furthermore, if the system has
localised reasonably to a pattern, one may deconstruct
it without affecting the underlying model parameters.
This is done by moving the temperature parameter
toward disorder, without training. The original
pattern is reconstructed by reducing the temperature
to a low value (1.0 is typical).

2.5.3. Controlling temporal event density

There are two basic methods for controlling the
level of detail of synthesised parameter contours or
events, by influencing the density and occurrence of
tokens into the network. In the first, tokens are created
at a chosen time or interval, by indicating at each
instance the index of the state at which they should
enter the network. In the second, a global decay value
between minus one and one is set which governs
the spontaneous production and absorption of tokens
at each state. When the value is positive, it specifies
the probability that a token exiting that state will
not transition to another, but rather cease to exist (in
other words it is a quantity to be subtracted from all
model transition probabilities). When it is negative,
it determines the probability that a second token will
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Figure 8. Output illustrating evolution between different ordered patterns, and between ordered and disordered ones, over

time, as the transition probability floor is gradually raised and then lowered. Sequences produced by successive tokens are

displayed in rows proceeding upward, with time running from left to right in each row. In the plot, value of an observed
parameter for this model determines the greyscale value of each pixel in the image.

be spawned to exit the state, in addition to the first.
Through these mechanisms, the number of active
tokens in the network may be controlled indepen-
dently of the time scale specified by the durations; and,
conversely, durations may be modified without
affecting the network density of tokens.

2.5.4. Summary of phenomenology

To summarise, the collection of interesting uses and
phenomena relevant to this model includes:

® The creation and interactive execution of statisti-
cal compositions, through the sculpting of a
model for the synthesis of parameters, which is
structured over a directed graph.

Invocation, evolution and disordering of
sequences of N-dimensional parameter vectors.
Production of interleaved streams of correlated or
non-correlated sequenced parameters.
Spontaneous formation, deformation and destru-
ction of long-range structure.

Interactive construction and deconstruction of
sequences.

Random walks through paths of sequences in
parameter space.

The generation of variations in time or parameter
space of a repetitive sequence through perturba-
tions.

Introduction through training of non-local inter-
actions in time between feature parameters.
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Table 2. List of interactive controls for the model as
described in this section (see also figure 9).

Interactive Controls

Mean Values

Deviations

Mixture Weights
Transition Probabilities
State Durations
Minimum Deviation
Minimum Transition Probability
Temperature

Parameter Training Rate
Transition Training Rate
Token Instantiation
Token Spawn/Decay Rate

® Inter-token interactions produced through
heightened token densities and training rates (as
one token enters a state that has just been visited

2.6. Practical considerations and caveats

There are a few important practical considerations
concerning the operation of the model described.
Firstly, a certain amount of practice is required in
order to avoid scenarios which could cause the
sequencing to destabilise during performance, with
sequenced parameter values growing out of control.
This typically occurs when the minimum variance
is set to a high value coincident with a large value
for the observation vector training parameter, a situa-
tion which may be encountered while evolving
sequences quickly over time. One resolution is to apply
a compressive nonlinear mapping to the range
of parameters once they are produced. Such a proce-
dure allows for control of the adaptation rate (and
consequently of the characteristic size of training
corrections) for different regions of parameter space.

Secondly, as mentioned above, there is a limitation
on the degree to which correlations may be learned
using the time-integrated local training algorithm
described here. In the future, it is desired to experiment

by another). with training based on sequences or sub-sequences
®06 6 hmmm example o
model composition state entry properties
*States [5] B5 1 [JBsoog | |Ez55] H W
# Baram EI Enter  Enter Clock Entry Maximum Recursive Freeze  Allow Self Smooth
State 1 StateN Eachtms MNumber Training Network Transitions Training
# Mixes Tokens Topology
parameter distribution
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Means Deviations Training Mixture Deviation Parameter Smoothing
Rate Weight (Temperature)
time sequenced parameters 6 Sec. ->
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Transition Decay or Minirmurn Duration Duration 13992854
Training Spawn Transition Scale Swing 38.00927
Rate Probability Probability 29 233294
31.538069
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Figure 9. A demonstration interface to the Max/MSP implementation of the HMM sequencing software, illustrating the sub-

set of real-time control possibilities which apply to parameters affecting the entire model at once. Further control over subsets

of model parameters and behaviour is available by means of commands which modify values individually or in subsets.

Sequenced parameters might be passed to an audio or visual media synthesizer running on the same computer, or transmitted
to another location using a network data transmission protocol such as OpenSoundControl (Freed and Wright 1997).



of data, using one of several Bayesian probabilistic
training methods which have been developed (Rabiner
1993), including variants of the online expectation
maximisation algorithm.

Thirdly, there are generic problems with the training
of probabilistic models having high-dimensional
feature spaces. In the case of Gaussian models in N
dimensions, the problem occurs because most of the
probability mass for the distribution lies within a shell
at a distance approximately /N |> | from the peak
of the distribution, with the result that, unlike the
low-dimensional case, most samples from the distribu-
tion do not fall near to the maximum (Bishop 1995).
One resolution is to divide the sequenced patterns into
statistically separate streams, as is common in large
feature space pattern recognition problems (Young
1994). Provision for this is envisioned for the next
release of the software.

Finally, the time-domain model which is implied
here is a discrete one, while one might in fact prefer to
model continuously parameterised sound processes.
Options for doing so include choosing a fine enough
time granularity, employing an interpolation scheme,
or some combination of the two. Furthermore, as
the current methodology is applicable to continuous
time domain Markov processes as presented, for
example, in Saul and Rahim (2000), it would be
interesting to implement the corresponding spontane-
ously organising continuum model to explore any
novel phenomena that may result.

3. APPLICATIONS

A great advantage of interactive algorithmic control
systems such as that described in this paper is that they
are not tied to a particular synthesis method, or even
to the medium of digital audio. Consequently, only a
few application possibilities can be mentioned here.
These come largely from experiments, performance,
and studio work by the author.

A model with a single state and several Gaussian
mixtures is useful in application to the synthesis of
quasi-stationary sound processes, including noise,
drones and textures, as in Recht (2003). Gaussian
mixture models have been applied to data-driven
synthesis in cluster weighted modelling (Schoner
1999).

Applications to fundamentally time-varying pro-
cesses may invite models having anywhere from
several states to several thousand states. Some
examples sorted according to the time scale native to
their application include:

® The sequencing of sound at the scale of gestures,
words or phrases.

® The production of sequences of parameterised
notes or note-like kernels.
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® The generation of data parameterising spectral
frames for continuous processes such as sinusoi-
dal, sinusoidal plus noise, or other resynthesis
techniques.

® The production of data parameterising streams of
synthesised (for example, using formant wave
synthesis) or sampled sound grains.

An approach to HMM-based sampled granular
synthesis which proves useful is to regard each state of
the model as a grain of sound. Parameters specifying
the grain — its duration, position or relative position,
playback speed, applied filtering, amplitude envelope
— are determined probabilistically, according to the
continuous distribution at the corresponding state,
and the sequence of grains played back is obtained
during sequencing from the model topology (which is
to say the topology on the collection of sound grains)
and transition probabilities. The grain duration may
be either linked to the state duration, or independent
of it. Sound may be played back from a buffer or
soundfile in precisely or approximately the way it is
stored in the buffer or soundfile, by associating to it
an HMM with a predominantly left-to-right topology
and probability distributions which are sharply
focused at the correct window shape, duration, and
amplitude envelope parameter values. This playback
may be interactively deconstructed through the
control of the model parameters indicated above.

An exciting related class of applications which has
received significant attention recently (Schwarz 2000;
Zils 2001; Lazier 2003) is that of the audio mosaic,
in which a sound is resynthesised according to its rela-
tive similarity to a collection of learned examples, or is
generated as a kind of reconstructive synthesis of a
body of musical material, allowing a simultaneous
microscopic and inter-relational approach to compo-
sition or microcomposition. The system described here
gives some indication of how such a process can be
interactively and creatively steered.

4. CONCLUSION

A spontaneously organising pattern model may also
be viewed as an analysis—synthesis statistical model
which, absent of external data sources, is trained on
itself, by causing its perception to be adapted to self-
generated observations. An interesting effect which
has been observed in a number of perceptual systems
starved of sensory input is that, under certain circum-
stances, they are capable of synthesising patterns of
sensory information from nothing. For example, in
the human visual cortex, organically and inorganically
evolving geometric shapes called phosphenes can be
produced when the retinal image is held extremely
constant, and perturbed in some fashion from its
uniform steady state, as by pressure exerted on both
closed eyes, or when sitting for a prolonged time in
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total darkness (Tkaczyk 2001). The synthetic model
described may in this sense be thought of as analogous
to a starved sensory organ. It is capable of generating
spontaneously patterned data for synthesis by an
appropriate audio or visual synthesis engine.

On the side of current audio technology, while
the move was perhaps not primarily directed at
applications having an aleatoric or creative bent, the
integration of an HMM representation for sound
into the MPEG-7 multimedia content description
framework (Casey 2002) is very promising for the
spread and interoperability of HMM-based sound or
other time-domain media sequencing and synthesis
applications, such as that described here.

Concerning sources of inspiration for the stunning
conception and formulation of stochastic music
expressed in his book Formalized Music, Xenakis
refers to the statistical physics foundations which have
influenced models such as that presented in this paper,
writing:

The basic principles of kinetic gas theory, which are

described by statistical mechanics, are very simple and

very general. They can be found in music as well.
(Xenakis 1996)

It is surprising that, forty years after the first publica-
tion of Formalized Music, the elaboration of new
methods for organising sound continues to be
enriched by the development of theory and tools for
the computation of nature and for the statistical
understanding of its perception.
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